
KAmod ESP32-C3 (PL)

Rev. 20260127080709
Źródło: https://wiki.kamamilabs.com/index.php?title=KAmod_ESP32-C3_(PL)

https://wiki.kamamilabs.com/index.php?title=KAmod_ESP32-C3_(PL)

Spis treści

Opis 1 ..
Podstawowe cechy i parametry 3 ...
Wyposażenie standardowe 4 ..
Schemat elektryczny 4 ..
Opis wyprowadzeń 5 ...
Zasilanie układu 6 ...
Konfiguracja środowiska Arduino i program testowy 7 ...
Konfiguracja środowiska do programowania w języku Rust i programy testowe 24 ...
Wymiary 32 ...
Linki zewnętrzne 33 ..

1

Opis
KAmod ESP32-C3 - Płytka rozwojowa z układem ESP32-C3 Mini-1
Na płytce KAmod ESP32-C3 znajduje się moduł ESP32-C3 Mini-1 firmy Espressif, który zawiera 32-bitowy, jednordzeniowy
mikrokontroler SoC o architekturze RISC-V oraz interfejsy radiowe Wi-Fi i Bluetooth 5 (LE) z obsługą trybu dalekiego zasięgu
(LR).

Częstotliwość taktowania MCU wynosi maksymalnie 160 MHz i jest wyposażony w aż 400 kB pamięci RAM i 4 MB pamięci
Flash. Obsługuje tryby niskiego zużycia energii, działa w temperaturach od -40 do +85︒C, realizuje funkcje bezpiecznego
rozruchu Secure Boot oraz szyfrowanie flash z AES-128/256-XTS, itd. Dzięki tak rozbudowanej specyfikacji doskonale nadaje
się do zastosowań przemysłowych oraz z zakresu IoT. Ponadto, na płytce modułu znajdują się: dokładny czujnik temperatury
i wilgotności SHTC3, czujnik MEMS typu ICM42670 zawierający 3-osiowy żyroskop i 3-osiowy akcelerometr, 3-kolorowa dioda
typu WS28212, oraz dioda LED podłączona do jednego z portów mikrokontrolera. Komponenty te ułatwią budowę wielu
różnych aplikacji.

Moduł jest zasilany napięciem +5V dostarczanym przez złącze USB-C, lub napięciem z akumulatora Li-Ion. Napięcie +3,3 V
zasilające mikrokontroler i układy peryferyjne wytwarza przetwornica Buck DC/DC typu SY8088 o napięciu wejściowym z
zakresu 2.5….5 V. Po zaniku napięcia ze złącza USB-C zasilanie automatycznie dostarczane jest z akumulatora (jeżeli jest
podłączony). Układ zasilania jest uzupełniony o ładowarkę akumulatora Li-Ion na bazie układu MCP7381, zasilanej ze złącza
USB-C.

Moduł KAmod ESP32-C3 jest przeznaczony do uruchamiania i testowania aplikacji w środowisku Arduino z użyciem języka
C/C++ oraz Rust.

2

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_2.jpg

3

Podstawowe cechy i parametry
Moduł ESP32C3 Mini-1 (Wi-Fi 802.11 b/g/n, Bluetooth 5 LE)
Mikrokontroler 32-bit RISC-V jednordzeniowy 160 MHz, 400 kB SRAM, 4 MB Flash
15 linii GPIO
interfejsy komunikacyjne SPI, I2C, I2S, UART, USB
przetwornik ADC 12-bit SAR do 6 kanałów
Akcelerometr ICM42670

Trójosiowy żyroskop MEMS - czujniki prędkości kątowej osi X, Y i Z
Trójosiowy akcelerometr MEMS osi X, Y i Z
Interfejs komunikacyjny: I2C

Termometr/higrometr SHTC3
Zakres pomiaru wilgotności 0…100%RH z dokładnością +/- 2%
Zakres pomiaru temperatury -40 do +125 °C. Dokładność pomiaru +/-0.2°C w zakresie od 0°C do +60°C
Interfejs komunikacyjny I2C

Przetwornica DC/DC typu SY8088
Układ ładowarki baterii Li-Ion typu MCP73831
Programowana dioda WS2812
Złącze USB-C

Zasilanie modułu napięciem +5V

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_3.jpg

4

Interfejs programujący pamięć Flash mikrokontrolera
Interfejs JTAG

Przyciski Reset i Boot

Wyposażenie standardowe
Kod Opis

KAmod ESP32-C3
• Zmontowany i uruchomiony moduł
• 1 x prosta listwa goldpin 12-pin raster 2,54 mm
• 1 x prosta listwa goldpin 16-pin raster 2,54 mm

Schemat elektryczny

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_4.jpg

5

Opis wyprowadzeń

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_sch.png

6

Zasilanie układu
Moduł jest zasilany napięciem VBUS o wartości +5 V ze złącza USB-C. To napięcie służy również do ładowania akumulatora
Li-Ion 4,2 V, jeśli jest podłączony do wyjścia Charger. Za proces ładowania odpowiada układ MCP7381 realizujący algorytm
ładowania o stałym natężeniu prądu/stałym napięciu, gdzie prąd ładowania jest ustawiony na 100 mA, a napięcie końcowe
na 4,20 V.

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_io.png

7

Konfiguracja środowiska Arduino i program testowy

Czynności wstępne
Podłączamy moduł Kamod ESP-C3 do komputera z zainstalowanym środowiskiem Arduino IDE. W oknie wyboru modułu
wybieramy moduł ESP32C3 Dev Module i wirtualny port szeregowy COMx, poprzez który jest połączony moduł.

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_pwr.png

8

W naszej procedurze testowej będziemy używali okna terminala, w którym będą wyświetlane wyniki działania programu.
Żeby to było możliwe trzeba odblokować domyślnie zablokowaną opcję USB CDC On Boot

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_Arduino_1.png

9

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_Arduino_2.png

10

Konfiguracja okna preferences
Otwieramy okno preferencji File->Preferences. W polu Additional boards manager ULRs zakładki Settings wpisujemy adres
https://dl.espressif.com/dl/package_esp32_index.json

https://dl.espressif.com/dl/package_esp32_index.json
https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_Arduino_3.png

11

Wybór typu procesora dla programowanego modułu
Wybieramy kolejno zakładkę Tools, następnie Board, rodzinę procesorów esp32 i moduł z procesorem ESP32C3. Każda
zmiana modułu podłączonego do komputera przez USB będzie wymagała powtórzenia tego kroku. Jeżeli nie wykonamy go na
początku, to można go wykonać przed kompilacją. W przeciwnym razie projekt nie zostanie prawidłowo skompilowany.

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_Arduino_4.png

12

Instalowanie bibliotek
Program testowy wymaga zainstalowania bibliotek obsługujących układy peryferyjne: akcelerometr ICM42670P,
termometr/higrometr SHTC3 i 3-kolorową diodę LED typu WS2812B.

13

Instalowanie biblioteki do obsługi układu ICM42670P
Klikamy na pionowym pasku narzędzi ikonę bibliotek. W oknie wyszukiwanie wpisujemy ICM42670, wybieramy ICM42670P
by TDK/Invensense i klikamy Install.

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_Arduino_5.png

14

Instalowanie biblioteki do obsługi układu SHTC3
Wybieramy bibliotekę Adafruit SHTC3 Library dostarczaną przez Adafruit. Wymaga ona doinstalowania powiązanych bibliotek
- aby to zrobić w wyskakującym dodatkowym oknie Install library dependencies klikamy Install All.

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_Arduino_6.png

15

Instalowanie biblioteki obsługującej 3-kolorową diodę
RGB typu WS2812

Do sterowania 3-kolorowej diody RGB zastosujemy bibliotekę dostarczana przez Adafruit - Adafruit NeoPixel

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_Arduino_7.png

16

Obsługa akcelerometru ICM42670P
ICM42670P jest połączony z mikrokontrolerem za pomocą magistrali I2C. Do jej obsługi jest przeznaczona biblioteka Wire. Do
inicjowania interfejsu I2S jest używana metoda begin z argumentami określającymi linie portów przypisane do sygnałów SDA
i SCL

#define I2C_SDA 10 //SDA IO10
#define I2C_SCL 8 //SCL IO8
Wire.begin(I2C_SDA, I2C_SCL);

17

Obsługa termometru/higrometru SHTC3
Układ SHTC3 łączy się z mikrokontrolerem również za pomocą interfejsu I2C. Konfiguracja i inicjacja tego interfejsu została
pokazana powyżej. Inicjalizacja biblioteki układu SHTC3 jest wykonywana standardowo przez metodę begin.

shtc3.begin();

Odczytywanie i konwersję wartości temperatury wykonuje metoda htc3.getEvent

htc3.getEvent(&humidity, &temp); // read temp and humidity

Dane wyjściowe są umieszczane w zmiennych temp.temperature i humidity.relative_humidity i można je bezpośrednio
wyświetlić.

Przykładowy wydruk odczytanych danych z czujnika SHTC3 na konsoli znakowej Arduino IDE

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_Arduino_8.png

18

Obsługa diody RGB WS2812B
Tworzymy instancję WS2812B, w której określamy: ilość diod WS2812 połączonych w łańcuchu (NUM_PIXELS), oraz numer
portu linii danych (PIN_WS2812B). Pozostałe parametry można zostawić domyślnie. U nas jest jedna dioda (NUM_PIXELS = 1)
podłączona do linii poru DO2 (PIN_WS2812B =2)

#define PIN_WS2812B 2 // ESP32 pin that connects to WS2812B
#define NUM_PIXELS 1 // The number of LEDs (pixels) on WS2812B
Adafruit_NeoPixel WS2812B(NUM_PIXELS, PIN_WS2812B, NEO_GRB + NEO_KHZ800);

Inicjalizacja drivera jest standardowo wykonywana przez metodę begin:

WS2812B.begin(); //WS2812 driver config

Metoda setBrightness służy do ustawiania jasności świecenia wszystkich diod

WS2812B.setBrightness(50); //WS8212 brightness

Metoda clear wygasza wszystkie diody, a metoda setPixelColor określa składowe koloru dla każdej z diod.

WS2812B.setPixelColor(0, WS2812B.Color(255, 0, 0)); //kolor czerwony

Skutki działania metod clear i setPixelColor są widoczne po wywołaniu metody show:

WS2812B.show();

19

Sprawdzanie działania modułu WiFi
Procedura testowa sprawdzająca działanie modułu WiFi polega na skanowaniu radiowej sieci WiFi i wyświetlaniu
znalezionych identyfikatorów SSID lokalnych sieci wraz z poziomem sygnału radiowego, kanałem radiowym oraz rodzajami
szyfrowania danych.
Najpierw jest ustawiany tryb WIFI_STA, czyli tryb stacji. W tym trybie moduł ESP32 może się łączyć z sieciami WIFI. Po
połączeniu z ruterem moduł może żądać informacji z Internetu (jeżeli ruter jest połączony z Internetem), lub z urządzeń z
lokalnej sieci rutera. Po ustawieniu tego trybu wykonujemy ewentualne rozłączenie z siecią (jeżeli moduł był wcześniej
połączony):

WiFi.mode(WIFI_STA); //station mode

WiFi.disconnect(); //disconnect WIFI network

Możemy teraz skanować identyfikatory sieci WIFI za pomocą metody scanNetworks
Metoda zwraca ilość wykrytych sieci wspomniane już parametry: poziom sygnału radiowego, kanał radiowy oraz rodzaj
szyfrowania danych.

numNetworks = WiFi.scanNetworks(); //scan WIFI networks </nowiki>
 Serial.println("Scan done");
 if (numNetworks == 0)
 {
 Serial.println("no networks found");
 }

Po wykonaniu skanowania można wyświetlić odczytane dane w konsoli i wykorzystać do w naszej aplikacji na przykład w celu
połączenia z wybraną siecią.

for (int i = 0; i < numNetworks; ++i) {
 // Print SSID and RSSI for each network found
 Serial.printf("%2d", i + 1);
 Serial.print(" | ");
 Serial.printf("%-32.32s", WiFi.SSID(i).c_str());
 Serial.print(" | ");
 Serial.printf("%4ld", WiFi.RSSI(i));
 Serial.print(" | ");
 Serial.printf("%2ld", WiFi.channel(i));
 Serial.print(" | ");
 switch (WiFi.encryptionType(i)) {
 case WIFI_AUTH_OPEN: Serial.print("open"); break;
 case WIFI_AUTH_WEP: Serial.print("WEP"); break;
 case WIFI_AUTH_WPA_PSK: Serial.print("WPA"); break;
 case WIFI_AUTH_WPA2_PSK: Serial.print("WPA2"); break;
 case WIFI_AUTH_WPA_WPA2_PSK: Serial.print("WPA+WPA2"); break;
 case WIFI_AUTH_WPA2_ENTERPRISE: Serial.print("WPA2-EAP"); break;
 case WIFI_AUTH_WPA3_PSK: Serial.print("WPA3"); break;
 case WIFI_AUTH_WPA2_WPA3_PSK: Serial.print("WPA2+WPA3"); break;
 case WIFI_AUTH_WAPI_PSK: Serial.print("WAPI"); break;
 default: Serial.print("unknown");
 }
 Serial.println();
 delay(10);
 }
 }

20

Przykładowy wydruk działania programu skanującego sieć WIFI na konsoli znakowej Arduino IDE

Po wykonaniu skanowania i wyświetleniu danych trzeba wyczyścić dane, żeby przygotować moduł WiFi do kolejnego
skanowania – metoda scanDelete

WiFi.scanDelete();

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_Arduino_9.png

21

Program testowy
Program testowy ma zadanie przetestować wszystkie komponenty umieszczone na płytce modułu. Test składa się z
kolejnych kroków:

Zapaleniu diody czerwonej LED podłączonej do linii portu IO7
Odczytaniu i wyświetleniu w konsoli Arduino IDE odczytanych danych z ICM42670P
Odczytaniu i wyświetleniu w konsoli Arduino IDE odczytanych danych z SHTC3
Skanowaniu sieci WIFI i wyświetleniu w konsoli Arduino IDE identyfikatorów SSID siłę sygnału radiowego, numer
kanału WIFI i rodzaj kodowania danych w sieci dla każdej ze znalezionych sieci
Zgaszeniu czerwonej diody LED
Zapaleniu co 0,5 sekundy kolejnych diod WS2812B czerwonej, zielonej i niebieskiej
Zgaszeniu wszystkich diod WS2812B i rozpoczęciu testu od nowa

Poniżej pokazany jest fragment ekranu konsoli znakowej Arduino IDE wyświetlający jeden przebieg programu testowego.

Kod programu testowego znajduje się poniżej, można go skompilować w środowisku Arduino.

#include "WiFi.h"
#include<Wire.h> //I2s DRIVER
#include <Adafruit_NeoPixel.h>//RGB diode WS2812
#include "Adafruit_SHTC3.h"
#include "ICM42670P.h" //ICM42670P driver

#define LED_BUILTIN 7 //LED IO7 to flash

#define I2C_SDA 10 //SDA IO10
#define I2C_SCL 8 //SCL IO8
#define PIN_WS2812B 2 // ESP32 pin that connects to WS2812B

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_Arduino_10.png

22

#define NUM_PIXELS 1 // The number of LEDs (pixels) on WS2812B

Adafruit_NeoPixel WS2812B(NUM_PIXELS, PIN_WS2812B, NEO_GRB + NEO_KHZ800);
ICM42670 IMU(Wire,0); //I2S addres 0x68
Adafruit_SHTC3 shtc3 = Adafruit_SHTC3();

void setup() {

 //WS28212 setup
 WS2812B.begin(); //WS2812 driver config
 WS2812B.setBrightness(50); //WS8212 brightness
 //LED flash setup
 pinMode(LED_BUILTIN, OUTPUT); //IO7 output
 //serial setup
 Serial.begin(115200);
 delay(2000);
 while(!Serial); //wait to serial ready
 //I2S line setup
 Wire.begin(I2C_SDA, I2C_SCL); //setup I2S driver
 IMU.begin(); //setup ICM42670P driver
 // Start accelerometer and gyroscope
 IMU.startAccel(100, 16); // 100 Hz, ±16g
 IMU.startGyro(100, 2000); // 100 Hz, ±2000 dps
 shtc3.begin();
 WiFi.mode(WIFI_STA);
 WiFi.disconnect();
 delay(100);
}
void loop()
 {
 int numNetworks;
 sensors_event_t humidity, temp;
 inv_imu_sensor_event_t imu_event;
 digitalWrite (LED_BUILTIN, HIGH);
 //ICM42670P register read, convert and
 Serial.print("\n");
 Serial.print("********************************");
 Serial.print("\n");
 int ret = IMU.getDataFromRegisters(imu_event); //ICM42670P register read
 Serial.println(ret);
 if (ret == 0) {
// Convert acceleration to g
 float accelX = imu_event.accel[0] / 2048.0;
 float accelY = imu_event.accel[1] / 2048.0;
 float accelZ = imu_event.accel[2] / 2048.0;

// Convert gyroscope to dps
 float gyroX = imu_event.gyro[0] / 16.4;
 float gyroY = imu_event.gyro[1] / 16.4;
 float gyroZ = imu_event.gyro[2] / 16.4;
//print converted result
 Serial.print("ICM42670P AccelX:");
 Serial.println(accelX);
 Serial.print("ICM42670P AccelY:");
 Serial.println(accelY);
 Serial.print("ICM42670P AccelZ:");
 Serial.println(accelZ);
 Serial.print("********************************");

23

 Serial.print("\n");
 Serial.print("ICM42670P GyroX:");
 Serial.println(gyroX);
 Serial.print("ICM42670P GyroY:");
 Serial.println(gyroY);
 Serial.print("ICM42670P GyroZ:");
 Serial.println(gyroZ);
 Serial.print("********************************");
 Serial.print("\n");
 Serial.print("ICM42670PTemperature:");
 Serial.println((imu_event.temperature/128.0)+25.0);
 Serial.print("********************************");
 Serial.print("\n");
}
 Serial.print("SHTC3P register read.........:");
 Serial.print("\n");
 Serial.print("********************************");
 Serial.print("\n");
 shtc3.getEvent(&humidity, &temp);// read temp and humidity
 Serial.print("SHTC3 Temperature: "); Serial.print(temp.temperature); Serial.println(" deg
C");
 Serial.print("SHTC3 Humidity: "); Serial.print(humidity.relative_humidity);
Serial.println("% rH");
 Serial.print("********************************");
 Serial.print("\n");
 numNetworks = WiFi.scanNetworks();
 Serial.println("Scan done");
 if (numNetworks == 0) {
 Serial.println("no networks found");
 } else {
 Serial.print(numNetworks);
 Serial.println(" networks found");
 Serial.println("Nr | SSID | RSSI | CH | Encryption");
 for (int i = 0; i < numNetworks; ++i) {
 // Print SSID and RSSI for each network found
 Serial.printf("%2d", i + 1);
 Serial.print(" | ");
 Serial.printf("%-32.32s", WiFi.SSID(i).c_str());
 Serial.print(" | ");
 Serial.printf("%4ld", WiFi.RSSI(i));
 Serial.print(" | ");
 Serial.printf("%2ld", WiFi.channel(i));
 Serial.print(" | ");
 switch (WiFi.encryptionType(i)) {
 case WIFI_AUTH_OPEN: Serial.print("open"); break;
 case WIFI_AUTH_WEP: Serial.print("WEP"); break;
 case WIFI_AUTH_WPA_PSK: Serial.print("WPA"); break;
 case WIFI_AUTH_WPA2_PSK: Serial.print("WPA2"); break;
 case WIFI_AUTH_WPA_WPA2_PSK: Serial.print("WPA+WPA2"); break;
 case WIFI_AUTH_WPA2_ENTERPRISE: Serial.print("WPA2-EAP"); break;
 case WIFI_AUTH_WPA3_PSK: Serial.print("WPA3"); break;
 case WIFI_AUTH_WPA2_WPA3_PSK: Serial.print("WPA2+WPA3"); break;
 case WIFI_AUTH_WAPI_PSK: Serial.print("WAPI"); break;
 default: Serial.print("unknown");
 }
 Serial.println();
 delay(10);
 }
 }

24

 WiFi.scanDelete();
 digitalWrite (LED_BUILTIN, LOW);
 WS2812B.clear(); // set all pixel colors to 'off'. It only takes effect if pixels.show()
is called
 WS2812B.setPixelColor(0, WS2812B.Color(255, 0, 0)); // it only takes effect if
pixels.show() is called
 WS2812B.show();
 delay(500);
 WS2812B.setPixelColor(0, WS2812B.Color(0, 255, 0)); // it only takes effect if
pixels.show() is called
 WS2812B.show();
 delay(500);
 WS2812B.setPixelColor(0, WS2812B.Color(0, 0, 255)); // it only takes effect if
pixels.show() is called
 WS2812B.show();
 delay(500);
 WS2812B.clear(); // set all pixel colors to 'off'. It only takes effect if pixels.show()
is called
 WS2812B.show();
 delay(100); // 500ms pause between each pixel
 //}
}

Konfiguracja środowiska do programowania w języku
Rust i programy testowe
Najpierw pokażemy, jak szybko pobrać i skonfigurować niezbędne komponenty i narzędzia programowe do wygenerowania
prostego projektu w języku Rust. Po skonfigurowaniu narzędzi będzie można projekt skompilować i przesłać do pamięci flash.
Wszystkie czynności są wykonywane w systemie operacyjnym Linux Ubuntu wersja 24.04.2 LTS. Komputer musi być
podłączony do Internetu.

25

Włączenie repozytorium Universe
"Universe" to standardowe repozytorium dla Ubuntu. Repozytorium jest utrzymywane przez społeczność i zapewnia
bezpłatne oprogramowanie typu open source. Domyślnie jest włączone w najnowszych wersjach Ubuntu. Jednak, gdyby tak
nie było to możemy go włączyć za pomocą wiersza poleceń:

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_Rust_1.png

26

Instalacja pakietów libssl-dev, libudev, kompilatora
C/C++ clang i interpretera Python 3

Pakiet libssl-dev zawiera protokoły kryptograficzne SSL i TLS do bezpiecznej komunikacji przez Internet. Pakiet libudev
udostępnia interfejs API do introspekcji i wyliczania urządzeń na poziomie lokalnym system. Clang jest kompilatorem języków
programowania C, C++ i Objective-C i jest częścią projektu LLVM. Znany z szybkiego czasu kompilacji i doskonałej
diagnostyki, Clang może również działać jako zamiennik GCC. W projekcie jest używany linker Clang. Python3-pip jest
pakietem instalacyjnym języka Python ver3, a python3-venv instaluje środowisko wirtualne.

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_Rust_2.png
https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_Rust_3.png

27

Instalacja pakietów Rust i menadżera Cargo
Rust to język programowania ogólnego przeznaczenia, kładący nacisk na wydajność, bezpieczeństwo typów i współbieżność.
Cargo to menedżer pakietów Rust. Cargo pobiera zależności pakietu Rust, kompiluje pakiety, tworzy pakiety dystrybucyjne i
przesyła je do crates.io, rejestru pakietów społeczności Rust.

Instalacja niezbędnych modułów Cargo:

espflash potrzebny do programowania pamięci Flash mikrokontrolera
ldproxy przekazanie argumentów konsolidatora
cargo-generate do generowania projektów według szablonu

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_Rust_4.png
https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_Rust_5.png
https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_Rust_6.png

28

Tworzenie projektu

Wykonanie tego polecenia otwiera okno uproszczonego menadżera projektu. Menadżer poprosi nas o:

wpisanie nazwy projektu na przykład test-modulu-esp32c3
wybranie z listy typu MCU – w naszym przypadku będzie to ESP32C3
wybranie wersji ESP-IDF wybieramy v5.3

Pozostałe opcje można wybrać tak jak na rysunku poniżej

Po wybraniu wszystkich opcji menadżer projektu utworzy katalog o nazwie projektu, w którym umieści niezbędne pliki. W
katalogu src projektu menadżer umieści plik źródłowy main.rs ze szkieletem wczytanym poleceniem cargo generate.

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_Rust_7.png
https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_Rust_8.png
https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_Rust_9.png

29

W tym momencie mamy już wszystko, żeby wyedytowany plik main.rs kompilować, przesyłać swój program do pamięci flash
i uruchamiać jego działanie. Wszystkie te czynności są wykonywane automatycznie po wykonaniu polecenie.

Jeżeli wykonujemy to pierwszy raz to polecenie będzie pobierało z sieci szereg niezbędnych komponentów i może to trochę
potrwać.

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_Rust_10.png

30

Testowanie modułu – miganie diody D2 podłączonej
do portu IO7

Na poniższym listingu jest wersja źródłowa programu cyklicznie zapalającego i gaszącego diodę LED co 500msek. Należy go
umieścić w pliku main.rd (katalog src) i wykonać polecenie cargo run.

use esp_idf_svc::hal::{delay::FreeRtos, gpio::PinDriver, peripherals::Peripherals};
//use esp_idf_sys as _; // If using the `binstart` feature of `esp-idf-sys`, always keep this
module imported
fn main() {
 // It is necessary to call this function once. Otherwise some patches to the runtime
 // implemented by esp-idf-sys might not link properly. See
https://github.com/esp-rs/esp-idf-template/issues/71
 esp_idf_svc::sys::link_patches();
let peripherals = Peripherals::take().expect("Failed to take peripherals");
 let mut led = PinDriver::output(peripherals.pins.gpio7).expect("Failed to create led
driver");
 loop {
 led.toggle().expect("Failed to toggle LED");
 FreeRtos::delay_ms(500);
 }
}

31

Testowanie modułu – odczyt danych z termometru
SHTC3 i akceleratora ICM42670

Podobnie jak w poprzednim przykładzie należy wpisać do pliku poniższa wersję źródłową i wykonać polecenia cargo run.

use esp_idf_svc::hal::{
 delay::FreeRtos,
 i2c::{I2cConfig, I2cDriver},
 prelude::*,
};
//use esp_idf_sys as _;
use icm42670::{accelerometer::vector::F32x3, prelude::_accelerometer_Accelerometer, Address};
use shtcx::{Measurement, PowerMode::*};

fn main() {
 esp_idf_svc::sys::link_patches();

 let peripherals = Peripherals::take().expect("Failed to take peripherals");

 let i2c_config = I2cConfig::new()
 .baudrate(100.kHz().into())
 .sda_enable_pullup(true)
 .scl_enable_pullup(true);

 let shared_bus = shared_bus::BusManagerSimple::new(
 I2cDriver::new(
 peripherals.i2c0,
 peripherals.pins.gpio10,
 peripherals.pins.gpio8,
 &i2c_config,
)
 .expect("Failed to create i2c driver"),
);

 let mut shtc3 = shtcx::shtc3(shared_bus.acquire_i2c());
 let mut icm42670 = icm42670::Icm42670::new(shared_bus.acquire_i2c(), Address::Primary)
 .expect("Failed to instantiate icm42670");

 loop {
 let Measurement {
 temperature,
 humidity,
 } = shtc3
 .measure(NormalMode, &mut FreeRtos)
 .expect("Failed to read SHTC3 temp/hum");

 println!(
 "SHTC3:\n\t- temp: {}\n\t- hum: {}",
 temperature.as_degrees_celsius(),
 humidity.as_percent()
);

 let temp = icm42670
 .temperature()
 .expect("Failed to read ICM42670 temp");

32

 let F32x3 {
 x: ax,
 y: ay,
 z: az,
 } = icm42670
 .accel_norm()
 .expect("Failed to read ICM42670 accel data");

 let F32x3 {
 x: gx,
 y: gy,
 z: gz,
 } = icm42670
 .gyro_norm()
 .expect("Failed to read ICM42670 gyro data");

 println!(
 "ICM42670:\n\t- temp: {}\n\t- accel: {}, {}, {}\n\t- gyro: {}, {},
{}",
 temp, ax, ay, az, gx, gy, gz
);
 FreeRtos::delay_ms(1000);
 }
}

Po wykonaniu komendy cargo run po skompilowaniu i zapisaniu pamięci flash na ekranie terminala będą co sekundę
wyświetlane odczytane po magistrali I2C dane z termometru i akceleratora.

Wymiary
Wymiary płytki Kamod ESP32-C3 to 63 x 27 mm.

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_Rust_11.png

33

Linki zewnętrzne
Dokumentacja układu ESP32-C3
Dokumentacja układu SHTC3
Dokumentacja układu ICM42670
Dokumentacja układu SY8088
Dokumentacja układu MCP73831
Get started with Rust
Cargo Rust dokumentacja
Rust przykłady

https://wiki.kamamilabs.com/index.php?title=File:KAmodESP32-C3_wym.png
https://www.espressif.com/en/products/socs/esp32-c3
https://sensirion.com/products/catalog/SHTC3
https://product.tdk.com/en/search/sensor/mortion-inertial/imu/info?part_no=ICM-42670-P
https://www.lcsc.com/datasheet/C79313.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP73831-Family-Data-Sheet-DS20001984H.pdf
https://rust-lang.org/learn/
https://doc.rust-lang.org/cargo/
https://dev.to/cyrilmarpaud/embedded-rust-on-esp32c3-board-a-hands-on-quickstart-guide-28mf

BTC Korporacja
05-120 Legionowo
ul. Lwowska 5
tel.: (22) 767-36-20
faks: (22) 767-36-33
e-mail:
sprzedaz@kamami.pl
https://kamami.pl

Zastrzegamy prawo do wprowadzania zmian bez uprzedzenia.
Oferowane przez nas płytki drukowane mogą się różnić od prezentowanej w dokumentacji, przy czym zmianom nie ulegają
jej właściwości użytkowe.
BTC Korporacja gwarantuje zgodność produktu ze specyfikacją.
BTC Korporacja nie ponosi odpowiedzialności za jakiekolwiek szkody powstałe bezpośrednio lub pośrednio w wyniku użycia
lub nieprawidłowego działania produktu.
BTC Korporacja zastrzega sobie prawo do modyfikacji niniejszej dokumentacji bez uprzedzenia.

https://kamami.pl

